Summary
Education
Skills
Languages
Selected Publications
Valid Driver License
Awards
Technical Skills
Timeline
Generic

STAN ROOZEN

Montreal,Canada

Summary

Geochemist specializing in thermodynamic modeling, multivariable data analytics, and ab-initio methods. Skilled in statistical learning, large dataset fitting, supercomputing, and workflow automation for mineral exploration and industrial applications. Integrates geoscience, physics, chemistry, and data science to develop innovative solutions. Passionate about coding, uncertainty quantification, and problem-solving, with a strong ability to self-learn. Extensive field experience in structurally complex ore-forming systems. Detail-oriented, collaborative, and committed to data-driven exploration success.

Education

PhD - Earth Sciences

McGill University
01.2025

MSc - Earth Sciences

ETH Zürich
01.2016

BSc - Interdisciplinary Sciences

University of Amsterdam & Utrecht University
01.2014

Exchange semester - Geology

Universidad Nacional Autónoma de México
01.2011

Skills

  • Python
  • Pandas
  • SciPy
  • NumPy
  • MATLAB
  • Mathematica
  • GIS
  • ArcGIS
  • QGIS
  • Multivariate regression techniques
  • Monte Carlo simulations
  • Geospatial analysis
  • Model uncertainty quantification
  • Bias-variance tradeoff
  • Solid solution model development
  • Thermodynamic database optimization
  • Phase equilibria modeling
  • DFT
  • Cloud computing
  • High-performance computing
  • Bash scripting
  • Calorimetry
  • Electron microscopy
  • Mass spectrometry

Languages

Dutch
English
Portuguese
Spanish
German
French

Selected Publications

  • Buret, Y. et al., 2017, Geology, 45, 7, 623-626, Zircon petrochronology in Cu-porphyry systems, https://doi.org/10.1130/G38994.1
  • Roozen S., 2016, Magmatic controls on Cu-Mo-Au porphyry formation, ETH Master Thesis, Dr. C. Heinrich
  • Van Hinsberg, V. et al., 2018, Geosciences, 8, 10, 367, Metamorphic controls on orogenic Au via thermodynamic modeling, https://doi.org/10.3390/geosciences8100367
  • Dachs, E. et al., 2021, Contrib Mineral Petrol, 176, 23, Thermodynamic modeling of Fe-Mg-Al biotites, https://doi.org/10.1007/s00410-020-01771-4
  • Roozen S., 2025, Solid solution modeling of tourmaline, McGill PhD Thesis, Dr. V. van Hinsberg, Combines crystal-chemical, calorimetric, and quantum methods to refine a solid solution model.

Valid Driver License

True

Awards

Secured competitive funding for fieldwork, international research, supercomputer and synchrotron access, e.g., SEG Research Grant (5,000 US$ in 2019, 2020), among many others.

Technical Skills

Python (Pandas, SciPy, NumPy), MATLAB, Mathematica, GIS (ArcGIS, QGIS), Multivariate regression techniques, Monte Carlo simulations, Geospatial analysis, Model uncertainty quantification, Bias-variance tradeoff, Solid solution model development, Thermodynamic database optimization, Phase equilibria modeling, DFT, Cloud & high-performance computing, Bash scripting, Calorimetry, Electron microscopy, Mass spectrometry, Isotope analysis, Synchrotron & spectroscopic techniques (XRD, XAS, Mössbauer, vibrational, optical), Structural mapping, Geochemical sampling, Mineralogical analysis, GIS-based ore targeting in porphyry Cu (Argentina), skarn (Mexico), and orogenic-Au systems (Greenland)

Timeline

MSc - Earth Sciences

ETH Zürich

BSc - Interdisciplinary Sciences

University of Amsterdam & Utrecht University

Exchange semester - Geology

Universidad Nacional Autónoma de México

PhD - Earth Sciences

McGill University
STAN ROOZEN